Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# 1:1 Hetero-assembly of 2-aminopyrimidine and (+)-camphoric acid 

Shyamaprosad Goswami, ${ }^{a}$ Reshmi Mukherjee, ${ }^{\text {a }}$ Kumaresh Ghosh, ${ }^{\text {a }}$ Ibrahim Abdul Razak, ${ }^{\text {b }}$ S. Shanmuga Sundara Raj ${ }^{\text {b }}$ and Hoong-Kun Fun ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Bengal Engineering College, Botanic Garden, Howrah 711103, India, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun@usm.my

Received 26 October 1999
Accepted 17 January 2000

In the title cocrystal, 2-aminopyrimidine-(+)-camphoric acid (1/1), $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \cdot \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$, the 2-aminopyrimidine forms two eight-membered hydrogen-bonded rings with two different camphoric acid molecules. This results in infinite wave-like chains of molecules in which neighbouring chains are connected by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts. The five-membered ring in the acid molecule adopts a half-chair conformation.

## Comment

Because of their strength as well as directional nature compared with other intermolecular non-covalent interactions (Lehn, 1995), hydrogen bonds are normally used as a tool in designing the structure of molecular crystals. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts play a significant role in determining the molecular packing of organic solids (Taylor \& Kennard, 1982). The crystal structure of 2-aminopyrimidine itself has been reported previously (Scheinbeim \& Schempp, 1976; Furberg et al., 1979) and both of the pyrimidine-ring N atoms and the amine group form eight-membered rings which leads to hydrogen-bonded self-assembly. The pattern can be changed to a heteroassembled structure where the donors (acid OH ) are paired with the acceptors (ring N) (Etter et al., 1990). This communication reports the structure of the hydrogen-bonded heterodimer of 2-aminopyrimidine with camphoric acid, (I), where the 2 -aminopyrimidine is hydrogen-bonded with the camphoric acid moiety to form typical eight-membered rings.

(I)

The bond lengths and bond angles of the 2 -aminopyrimidine and the camphoric acid molecules are comparable
with the reported values (Etter et al., 1990; Furberg et al., 1979; Barnes et al., 1991). The five-membered ring of the acid molecule adopts a half-chair conformation, as observed in trans- $\pi$ camphanic acid (Hudson \& Mills, 1972), with $\delta C_{2}(\mathrm{C} 3)=$ 0.007 (2) $\AA$ (Nardelli, 1983). The twofold axis passes through C 3 and intersects the $\mathrm{C} 1-\mathrm{C} 5$ bond. Atoms C1 and C5 deviate from the mean plane defined by the atoms $\mathrm{C} 2, \mathrm{C} 3$ and C 4 by 0.316 (5) and -0.376 (5) Å, respectively.

In the crystal (Fig. 1), each acid molecule is linked to two 2aminopyrimidine molecules and vice versa by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds to form two symmetry-independent eight-membered rings each of which has the graph-set motif of $R_{2}^{2}(8)$ (Bernstein et al., 1995). The eight-membered ring formed between the two moieties belonging to the same asymmetric unit (i.e. that ring involving N 2 and O 2 ) is almost planar with a maximum deviation from the plane of 0.111 (4) $\AA$ for O1. The second eight-membered ring, which contains O 4 and $\mathrm{N} 1^{\mathrm{i}}$ [symmetry code: (i) $\frac{3}{2}-x, 1-$ $\left.y, z-\frac{1}{2}\right]$, is more twisted with the angle between the two fouratom planes defined by the acid and amine moieties being


Figure 1
The structure of the title compound showing $30 \%$ probability displacement ellipsoids and the atom-numbering scheme.
23.8 (4) ${ }^{\circ}$. The maximum deviation from the mean ring plane is 0.321 (5) $\AA$ for O3. The mean plane through the fivemembered ring in the acid molecule makes dihedral angles of 33.9 (2) and $38.3(2)^{\circ}$, respectively, with the two adjacent pyrimidine rings described above. These hydrogen bonds thereby link the acid and amine moieties into infinite wavelike chains which extend parallel to the $c$ axis (Fig. 2). The crystal structure is also characterized by alternate layers of camphoric acid and 2-aminopyrimidine molecules which lie parallel to the $a b$ plane. This pattern has also been reported by De Santis et al. (1997). The neighbouring chains are interconnected by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1 ) and are stacked along the $b$ axis with $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the 2-aminopyrimidine molecules of $3.602 \AA[\mathrm{C} 13-\mathrm{H} 13 A=$ $0.93, \mathrm{H} 13 A-C g\left(-\frac{1}{2}+x, \frac{3}{2}-y, 1-z\right)=2.893 \AA$ and C13$\mathrm{H} 13 A \cdots C g\left(-\frac{1}{2}+x, \frac{3}{2}-y, 1-z\right)=134^{\circ}(C g=$ centroid of pyrimidine ring)].


Figure 2
The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions connecting neighbouring chains. The symmetry operators are given in Table 1.

## Experimental

Single crystals of (I) were grown by evaporation of a 1:1 mixture of 2 -aminopyrimidine and $(1 R, 3 S)-(+)$-camphoric acid in ethanol.

## Crystal data

$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \cdot \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$
$M_{r}=295.34$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.146$ (1) $\AA$ 。
$b=10.561$ (1) $\AA$
$c=21.306(1) \AA$
$V=1607.9(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 2297 reflections
$\theta=1.91-28.33^{\circ}$
$\mu=0.090 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.36 \times 0.16 \times 0.12 \mathrm{~mm}$
$D_{x}=1.220 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

| Siemens SMART CCD area- | $R_{\text {int }}=0.066$ |
| :--- | :--- |
| $\quad$ detector diffractometer | $\theta_{\max }=25.01^{\circ}$ |
| $\omega$ scans | $h=-7 \rightarrow 8$ |
| 8732 measured reflections | $k=-12 \rightarrow 12$ |
| 2837 independent reflections | $l=-23 \rightarrow 25$ |
| 1522 reflections with $I>2 \sigma(I)$ |  |
| Refinement |  |
| Refinement on $F^{2}$ | $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0551 P)^{2}\right.$ |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$ | $+0.2628 P]$ |
| $w R\left(F^{2}\right)=0.159$ | where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$ |
| $S=1.05$ | $(\Delta / \sigma)_{\max }<0.001$ |
| 2837 reflections | $\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3}$ |
| 190 parameters | $\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$ |
| H atoms constrained |  |

Table 1
Hydrogen-bonding geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 2$ | 0.82 | 1.87 | 2.665 (5) | 163 |
| $\mathrm{O} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{N}{ }^{1}$ | 0.82 | 1.90 | 2.713 (4) | 170 |
| N3-H3D . O 1 | 0.86 | 2.06 | 2.910 (5) | 170 |
| $\mathrm{N} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O}^{\text {ii }}$ | 0.86 | 2.13 | 2.951 (5) | 161 |
| $\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 3^{\text {iii }}$ | 0.93 | 2.59 | 3.221 (6) | 125 |

Symmetry codes: (i) $\frac{3}{2}-x, 1-y, z-\frac{1}{2}$; (ii) $\frac{3}{2}-x, 1-y, \frac{1}{2}+z$; (iii) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$.

After checking their presence in the difference map, the positions of all H atoms were geometrically idealized and allowed to ride on their parent atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R \& D No. 305/PFIZIK/622004. SSSR thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1090). Services for accessing these data are described at the back of the journal.

## References

Barnes, J. C., Paton, J. D., Blyth, C. S. \& Howie, R. A. (1991). Acta Cryst. C47, 1888-1892.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
De Santis, P., Camalli, M., Spagna, R., Gallo, G., Giorgi, F. \& Tinti, M. O. (1997). Acta Cryst. C53, 1679-1682.

Etter, M. C., Adsmond, D. A. \& Britton, D. (1990). Acta Cryst. C46, 933-934.
Furberg, S., Grøgaard, J. \& Smedsrud, B. (1979). Acta Chem. Scand. Ser. B, 33, 715-724.
Hudson, D. W. \& Mills, O. S. (1972). Chem. Commun. pp. 647-648.
Lehn, J. M. (1995). Supramolecular Chemistry, edited by U. Anton, pp. 1-171. New York: VCH.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Scheinbeim, J. \& Schempp, E. (1976). Acta Cryst. B32, 607-609.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

